Статус документа
Статус документа

ГОСТ Р ИСО 18300-2020



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРАНСПОРТНЫЕ СРЕДСТВА НА ЭЛЕКТРИЧЕСКОЙ ТЯГЕ

Методы испытаний гибридных систем литий-ионных и свинцово-кислотных батарей или конденсаторов

Electrically propelled vehicles. Test specifications for lithium-ion battery systems combined with lead acid battery or capacitor



ОКС 43.120

Дата введения 2021-03-01



Предисловие

     

1 ПОДГОТОВЛЕН Национальной ассоциацией производителей источников тока "РУСБАТ" (Ассоциация "РУСБАТ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4, и Федеральным государственным унитарным предприятием "Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия" (ФГУП "СТАНДАРТИНФОРМ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 044 "Аккумуляторы и батареи"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 августа 2020 г. N 517-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 18300:2016* "Транспортные средства на электрической тяге. Методы испытаний гибридных систем литий-ионных и свинцово-кислотных батарей или конденсаторов" (ISO 18300:2016 "Electrically propelled vehicles - Test specifications for lithium-ion battery systems combined with lead acid battery or capacitor", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

Дополнительные сноски, выделенные курсивом, приведены для пояснения текста оригинала

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение


Бортовые накопители электрической энергии с высокими рабочими характеристиками являются основным препятствием в разработке электромобилей, доступных по более приемлемым ценам. Для обеспечения высокой эффективности и хороших характеристик движения к источникам накопления электрической энергии предъявляют многочисленные требования, такие как высокая мощность и плотность энергии, длительный календарный срок службы и устойчивость к циклированию, надежность, широкий диапазон температур и отсутствие выбросов загрязняющих веществ. Наиболее распространенными источниками энергии в электрических транспортных средствах являются электрохимические батареи и двойнослойные электрические конденсаторы. Однако установка только одного типа накопителя/источника энергии может быть недостаточной для устранения недостатков каждого отдельного типа. Гибридизация источника энергии позволяет решить некоторые ключевые проблемы, возникающие в электромобилях, когда основным источником энергии является литий-ионный аккумулятор, такие как рекуперативное торможение.

Например, в современных гибридных электромобилях (ЭМГ) для обеспечения питания автомобиля используют аккумуляторные батареи совместно с бензиновыми двигателями. В такой системе используют батарею в качестве силового буфера для поддержки двигателя с целью снижения расхода топлива. В батарее, используемой в ЭМГ, постоянно изменяется количество энергии, которую она генерирует и получает от нагрузки. Большинство аккумуляторных батарей имеют низкую удельную энергию, к тому же срок их службы сокращается при постоянном случайном колебании нагрузки. Решением этой проблемы могут быть гибридная батарейная система, две батарейные системы или комбинированная система с электрическим двойнослойным конденсатором. Используя дополнительные системы накопления энергии, можно добиться улучшения характеристик батареи.

Гибридная литий-ионная батарейная система дает возможность дополнить традиционную бортовую электрическую сеть 12 В электрической системой и компонентами 48 В, сократив разрыв между низкоуровневой гибридизацией, основанной на используемых в настоящее время системах "старт-стоп", основанных на напряжении 12 В. Ожидается, что многие проданные гибриды будут представлять собой микрогибриды, использующие технологии "старт-стоп" и рекуперации при торможении, которые работают либо с существующей электрической системой автомобиля 12 В, либо с комбинированной электрической системой с двумя батареями 12 и 48 В. Эти относительно недорогие системы "старт-стоп" могут обеспечить ограниченную гибридную помощь при запуске двигателя, а также для регенерации энергии во время торможения.

Целью настоящего стандарта является установление требований и методов испытаний такой электрической системы напряжения класса А.

     1 Область применения


Настоящий стандарт распространяется на системы литий-ионных батарей в сочетании со свинцово-кислотными батареями или электрическими двойнослойными конденсаторами, применяемые в транспортных средствах на электрической тяге с системами напряжения класса А, и устанавливает требования к конструкции и методы испытаний.

Настоящий стандарт распространяется на комбинации систем накопителей электрической энергии, размещаемые в общем корпусе.

     2 Нормативные ссылки


В настоящем стандарте нормативные ссылки отсутствуют.

     3 Термины и определения


В настоящем стандарте применены термины с соответствующими определениями по ISO/TR 8713, а также следующие термины с соответствующими определениями.

ИСО и МЭК ведут терминологические базы данных для использования в стандартизации по следующим адресам:

- Электропедия МЭК: доступна на http://www.electropedia.org/;

- платформа онлайн-просмотра ИСО: доступна на http://www.iso.org/obp.

3.1 вспомогательная батарея (assistance battery): Батарея, которая временно поддерживает основную батарею.

3.2 вспомогательный конденсатор (assistance capacitor): Электрическая двойнослойная конденсаторная система накопления энергии, которая временно поддерживает основную батарею.

3.3 батарея (battery): Один или несколько аккумуляторов, оснащенных необходимыми для использования устройствами, например корпусом, выводами, и защитными устройствами, а также маркировкой.

3.4 блок контроля и управления батареи; БКУ (battery control unit; BCU): Электронное устройство с функциями контроля, управления, измерения и/или расчета электрических и тепловых параметров батарейной системы, а также обеспечивающее информационную связь между батарейной системой и другими контроллерами транспортного средства.

3.5 емкость C (capacity C): Общее количество ампер-часов, которое может быть получено от полностью заряженной батареи при определенных условиях основной батареи.

3.6 потребитель (customer): Сторона, которая заинтересована в использовании батарейного блока или системы и, следовательно, может заказать или выполнить испытание.

3.7 объект испытаний; ОИ (device under test; DUT): Литий-ионный батарейный блок или система в сочетании со свинцово-кислотной батареей или электрическим двойнослойным конденсатором.

3.8 двойнослойный электрохимический конденсатор; ЭХК (electric double layer capacitor; EDLC): Устройство для электростатического накопления электрической энергии, достигаемой разделением заряда в двойном электрическом слое.

3.9 двойнослойная конденсаторная система накопления электрической энергии (electric double layer capacitor energy storage system): Устройство накопления энергии, состоящее из двойнослойных электрохимических конденсаторов, конденсаторных сборок или блоков, электрически соединенных между собой, а также с электронными устройствами.

3.10 литий-ионный аккумулятор (lithium-ion cell): Аккумулятор, электрическая энергия в котором образуется в результате реакций внедрения и экстракции ионов лития между анодом и катодом.

Примечания

1 Аккумулятор - это базовое промышленно выпускаемое устройство, являющееся источником электрической энергии тока, получаемой прямым преобразованием химической энергии. Аккумулятор состоит из электродов, сепаратора, электролита, корпуса и клемм. Возможность заряжать его электрической энергией обеспечена конструкцией аккумулятора.

2 В настоящем стандарте под аккумулятором подразумевают вторичный литий-ионный элемент, используемый для приведения в движение электромобилей.

3.11 литий-ионный батарейный блок, батарейный блок (lithium-ion battery pack, battery pack): Устройство накопления энергии, состоящее из аккумуляторов, сборок аккумуляторов, электрически соединенных между собой, а также с электронными устройствами на аккумуляторах и с устройствами отключения по превышению тока, и интерфейсов для внешних систем.

Примечание - Примерами интерфейсов являются интерфейсы системы охлаждения, высокого напряжения, вспомогательного низкого напряжения и коммуникации.

3.12 литий-ионная батарейная система, батарейная система (lithium-ion battery system, battery system): Устройство накопления энергии, состоящее из аккумуляторов, сборок аккумуляторов или батарейных блоков, электрически соединенных между собой, а также электронных устройств.

Пример - БКУ, контакторы.

3.13 основная батарея (main battery): Литий-ионный батарейный блок или система, которая в основном непрерывно обеспечивает основную часть электрической энергии.

3.14 комнатная температура; КТ (room temperature; RT): Температура, равная (25±2)°С.

3.15 микроцикл (micro-cycle): Цикл заряда-разряда продолжительностью 60 с.

     4 Сокращения


ЛИСК (LIPB) - литий-ионный батарейный блок или система в сочетании со свинцово-кислотной батареей;

ЛИЭК (LICA) - литий-ионный батарейный блок или система в сочетании с двойнослойным электрическим конденсатором.

     5 Тип соединения с литий-ионным батарейным блоком или системой

     5.1 Литий-ионный батарейный блок или система в сочетании со свинцово-кислотной батареей


ЛИСК состоит из литий-ионного батарейного блока или системы в качестве основной батареи и свинцово-кислотной батареи в качестве вспомогательной батареи. Основная и вспомогательная батареи соединены механическими и электрическими соединительными планками, как показано на рисунке 1 (для получения дополнительной информации см. также приложение А, в том числе рисунки А.2, А.3 и А.4).

     1 - основная батарея (литий-ионная батарейная система); 2 - вспомогательная батарея (свинцово-кислотная батарея)

     Рисунок 1 - Тип конфигурации ЛИСК


Примечание - Существует несколько способов подключения. Изображение на этом рисунке только принципиальное.

     5.2 Литий-ионный батарейный блок или система в сочетании с двойнослойной конденсаторной системой накопления электрической энергии


ЛИЭК состоит из литий-ионного батарейного блока или системы в качестве основной батареи и двойнослойного конденсаторного накопителя электрической энергии в качестве вспомогательного конденсатора. Основная батарея и вспомогательный конденсатор соединены механическими и электрическими соединительными планками, как показано на рисунке 2 (для получения дополнительной информации см. также приложение А).

     1 - основная батарея (литий-ионная батарейная система); 2 - вспомогательная батарея (вспомогательный конденсатор)

     Рисунок 2 - Тип конфигурации ЛИЭК


Примечание - Существует несколько способов подключения. Изображение на этом рисунке только принципиальное.

     6 Общие требования


Одновременно с ОИ на испытания должны быть предоставлены необходимые документация для работы и части интерфейса для подключения к испытательному оборудованию (т.е. разъемы, вилки, а также фитинги системы охлаждения).

В ОИ должна быть обеспечена возможность его испытания с соответствующими режимами, которые должны быть реализованы в БКУ, и связи с испытательным стендом через обычные коммуникационные шины.

Если не указаны другие требования, перед каждым испытанием ОИ должен быть стабилизирован при температуре испытания в течение не менее 12 ч, и если имеется БКУ, он должен быть отключен. При достижении тепловой стабилизации ОИ этот период может быть уменьшен. Тепловую стабилизацию считают достигнутой, если по истечении 1 ч разница температур между всеми доступными точками измерения температуры на аккумуляторах не превышает 4°С.

Если не указаны другие требования, за каждым зарядом и каждым изменением степени заряженности (СЗ) следует период выдержки 30 мин. Точность внешнего оборудования для измерения должна быть в пределах следующих допусков:

- ±0,5% - для напряжения;

- ±0,5% - для тока;

- ±1°С - для температуры.

Суммарная погрешность измерений контролируемых и измеряемых величин по отношению к установленным или фактическим значениям должна быть не более:

Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs